Programming Volume Controls

a.k.a. Notice to Programmers of Audio Software and

Hardware

There is a single very annoying thing about lots of audio software products, due to
either lack of programmers' knowledge about the human auditory system,
laziness, or both. Their volume controls are a pain to work with. If you could ever
be involved — even remotely — in the development of a software or hardware
product involving sound, please read this text carefully, burn its core message

into your memory and spread the news!

A Chinese translation of this page is available. R AZ N TAAYFIZERE,

To the Point

For those with little time, here is the essence of this text compressed into a few

sentences:

e Volume sliders must not be linear. Linear volume sliders are a nuisance
because human perception of loudness is not linear at all, it is
logarithmic. That is why all audio equipment worth its name uses the
dB scale to indicate volume and gain settings. For a relative amplitude

level x, the dB value equals 20*log;y(x). Positive dB values mean

amplification, negative values attenuation. Multiplying amplitude by a
certain factor means adding a certain amount of dB. To measure
absolute loudness as perceived by humans, the dB(A) scale is often
used, with 0 dB(A) the loudness of the most silent perceivable sound.
In practice, a ‘silent” room will be at £30 dB(A).

¢ A volume control should not be based on percentages, because this
implies linearity. A percentage is only acceptable if it maps to dB
values, e.g. 0% =-60 dB and 100% = 0 dB.

¢ The ideal volume slider follows an exponential curve y = a-exp(b-x),
with its lowest setting corresponding to ‘silence’ (typically 30 dB(A)
for consumer products) and its highest setting the maximum loudness
the user's audio equipment produces. The problem with this is that one
can in general only make vague assumptions about what equipment the
user will be using. Unless you are working on a high-end product with

known specifications, you will need to make some guesses and



approximations. A good assumption for consumer equipment is that
the user will have a usable range of 60 dB.

e Table 1 shows some practical values of parameters a and b in the
formula y = a-exp(b-x) for various figures of loudness ranges; x is the
slider's relative position in the interval [0,1] and y is the actual scale
factor for the sound waveform. Again, you should probably use the
parameters for 60 dB range. Add a linear roll-off near zero if you want
to ensure perfect silence at volume setting 0.

e [fyou want to offer a way of changing volume by discrete increments,
like pushing buttons or turning a mouse scroll wheel, make sure the
increments are somewhere between 1 dB and 3 dB. Volume changes
below 1 dB are not noticeable and changes above 3 dB are too coarse.
2 dB is pretty much ideal as a step size.

¢ If for some reason you don't want to implement a full exponential
function, you can instead rely on a good all-round and computationally
cheap approximation that fits the typical 60 dB range of low-to-
medium powered consumer audio systems. This approximation is the

4th power of the volume slider's position x scaled to the interval [0, 1].

In other words: amplitude multiplication factor = x* Table 1 shows
similar approximations for other dynamic ranges. If you cannot afford
implementing a true exponential curve, use this simple formula for
your volume slider. It is not perfect, but a billion times better than a

linear slider!

If you want to know more, read on. Otherwise, read the above list again and make

sure you'll never forget it.

Why Linear Volume Controls are Evil

Most audio software nowadays has sliders or even rotating knobs to control the
volume. The intention is to mimic controls of ‘classic’ audio hardware.
Unfortunately, there is one thing about a lot of software sliders which makes them
a pain in the ass: they are LINEAR. You might ask, what could possibly be wrong
with a linear slider: it is zero at the one end, 100% at the other end, and neatly

linear in between, isn't that just ideal? The answer is a big no.

Give it a try: open your favourite audio player, start playing a song, grab the
volume slider, and wobble it to and fro at the ‘loud’ end of the volume range.
Next, do the same at the ‘silent’ end. Chances are you will experience the
following: almost no audible volume variations at the ‘loud’ end, and extreme
volume variations at the ‘silent’ end. In that case you can be pretty sure the slider

is linear.



A few popular applications that I have found to suffer from this flaw, are:

QuickTime Player

iTunes (fixed in later versions!)

Windows Media Player and the Windows volume control

YouTube and pretty much every other Flash-based video player(!).

The evil has even spread to hardware. Velleman sells a solderable kit of a graphic
equaliser, K4302. I don't know if this has been corrected now, but when I bought
the kit back in 1995 it had linear sliders while they should be logarithmic (C law
if I'm correct). Even the G3 iMac's volume control was linear, and I'm afraid that

this is just one of many examples.

Next to what has already been said above, using a linear volume control can lead

to these symptoms:

e The most silent volume setting, the first step above mute, is still too
loud.

e The perceived maximum volume level is reached around the middle of
the slider, making the upper half useless.

e When connecting earphones with a high sensitivity versus PC speakers
with low output to the same computer, it is difficult or impossible to
make fine volume adjustments with the earphones, while the slider
needs to be hauled over great distances to cause any loudness change

on the speakers.

Issues like these ultimately lead to frustrated people cursing the damn volume
control, or feeling uneasy while using your product without really knowing why.
Luckily there are lots of products with correct volume controls, but the number of

flawed products is way too high.

What 1s going wrong?
Now what exactly is wrong with a linear volume slider? The answer lies within

the way our ears perceive sound. The point is that our sensation of ‘loudness’ is
LOGARITHMIC.



-

a4 g Perceived loudness

/ Il Linear arplitude el

G

This means that we are much more sensitive to small variations in amplitude for
silent sounds than for loud sounds. This allows us to cope with a very large
dynamic range of amplitudes. It also means a linear volume slider causes a
logarithmic sensation of volume variations, and that just doesn't feel right. The
above figure shows a logarithmic curve. Two identical sections are marked on the
horizontal axis (read: the volume slider). The vertical axis shows perceived
volume changes. The corresponding section marked by the curve at the ‘silent’

end is much larger than at the ‘loud’ end.

The solution to implementing a real volume slider is fairly simple: instead of
being linear, the slider should be EXPONENTIAL. Because log(exp(x)) = x, the

sensation of volume variations will be linear, and that is what we want?),

In this text [ will assume that both the volume slider and the audio system work
with values between zero (minimum) and one (maximum). The volume slider
position is represented by x, the resulting multiplication factor for signed sound

wave data is y.

. . y )
Finding the ‘1deal’ curve

Exponential functions have two annoying properties. The first is that they only
reach zero at minus infinity. This is not a problem however, because our ears do

not have infinite sensitivity. We only need to know the practical dynamic range,

this will be explained below.

The second is that in its most general form y = a-exp(b-x)+c, an exponential
function going through two points can have various shapes. Even a linear function
is a limit case of such a curve. Luckily in the case of our volume control, we can
and should limit the equation to y = a-exp(b-x) because our ears do not have an
offset. This means that two points suffice to obtain a unique solution for the
constants @ and b. We already know one of those points, because we want the

function to have a value of 1 for x = 1. This means that a = 1/exp(b). So the



problem is reduced to determining the correct value of b, which controls the shape
of the curve. Small values produce a very ‘sharp’ curve while large values

produce a more linear-like curve.

If you are still thinking linearly you might be tempted to pick (0,0) as the second
point, which it is not. As I said above, our exponential volume control will
inevitably still have a non-zero amplitude at the zero slider position. This is not a
problem because the logarithmic response curve of our ears also hits zero below a
certain non-zero input loudness, the hearing threshold. Moreover, in any normal
environment with background noise, sounds with a loudness below the noise level
will already be inaudible. The major problem is that even though the hearing
threshold is roughly the same across different persons, the loudness produced by
any audio system for a given signal amplitude depends on a multitude of
parameters. To determine the correct value for b, we need more information. If we
want to provide the user with a “fully linear volume control sensation,” we would
need to know how ‘loud’ their audio equipment plays at its loudest setting.
Obviously, this is not a practical question. There simply is no specific answer to it
unless you are developing software for very specific audio hardware. We will
need to make some assumptions. First a short digression about how sound

‘loudness’ is measured.

Measuring sound levels

Because the human auditory system has a logarithmic sensitivity curve, a special
unit of ‘sound loudness’ was invented and named after Graham Bell: the ‘Bel’.
This unit is too large to be practical however, therefore it is almost always used
with a factor 0.1, yielding the decibel, denoted with the symbol dB: 1 Bel =

10 dB. There are two kinds of dB scales, an absolute and a relative scale.

The absolute scale tries to give an indication of how loud a certain sound is
perceived by an average human listener, aka the “sound pressure level” (SPL).
There are some variations on this scale, but the most widely used one is “dB(A)”.
To determine the dB(A) value for a certain sound, the sound has to be filtered
through a filter corresponding to the frequency response curve of an “average
human”. Next, the 10-base logarithm of the power is taken and the result is
multiplied by 10. I will not go into more detail on this because it is not of much
use here. What you should know is that the most silent audible volume level (the
hearing threshold) corresponds to 0 dB(A). In practice, people will already
perceive 30 dB(A) as silence because that is about the background noise level in
many ‘silent’ environments. Being in an environment with 0 dB(A) is actually a
weird experience. The loudest volume level (the ‘pain threshold’) is about

120 dB(A). A classical orchestra can produce about 94 dB(A). Note that because



of the logarithm, multiplying the power of a sound by a factor of 10 means adding
10 to the dB(A) value.

The relative scale is used for all kinds of physical quantities, and indicates the
relative amplitude of a signal compared to another. The symbol is simply ‘dB’.
The calculation of the dB value depends on whether one is working with

amplitudes or power values. For power values, the formula is 10-log;(x), with x

the relative power. For amplitude values, the formula is 20-1og;((x). The reason is

that power « amplitudez, and the square (second power) becomes a factor 2 after

taking the logarithm.

Theoretically, the absolute and relative scales cannot be readily interchanged.
When taking a sound of 90 dB(A) and attenuating it to —20 dB, there is no
guarantee at all that it will be perceived exactly as 70 dB(A). But in practice it
will be an OK approximation, therefore in this text I consider the scales as

compatible.

Finding the 1deal curve, part 2

Now we know more about the dB scale, we can go back to our problem of
determining a good b value in a-exp(b-x). We should make sure the resulting
curve results in a near linear loudness experience with the listener. To start with,
there is little to no point in going below 30 dB(A) because background noise in
any realistic environment will be around that level. Hence we should consider
30 dB(A) as the threshold instead of 0 dB(A).

Now let us assume that the maximum loudness that can be produced by the user's
equipment is 90 dB(A). This is quite loud already and people will generally not
want to expose themselves to more than 90 dB(A) for a prolonged period anyway.
Built-in speakers in PCs and laptops may not even be able to reach this level, but

earphones and headphones as well as Hi-Fi or PA systems can easily exceed it.

We now know two points of our y = a-exp(b-x) curve, namely: (0, 30dB(A)) and
(1, 90dB(A)). If we move to relative units, this translates to either (0, -60dB) and
(1, 0dB) when working with the usual convention of attenuation levels. If we
offset this by 60 dB we get (0, 0dB) and (1, 60dB), making our calculations

somewhat more intuitive. Given that we work with amplitudes, 60 dB is 1060720 =
1000 times the amplitude of 0 dB. Hence 1000 = exp(b-1) and b = In(1000) =
6.908. The value of a is simply 1/1000.

Now we have a practical curve which should produce an agreeable result in most

situations. Theoretically, the lowest position on the slider should correspond to



30 dB(A), the level at which sound becomes masked by background noise.
Although this means there is no real need to force the output to zero, in practice
this is desirable because people expect absolute silence at the zero setting, and this
is not guaranteed with all our guesswork. A simple solution is to add “if(x == @)
ampl = 0;” to the slider code. For a smoother transition to zero, something like

this could be used: “if(x < .1) ampl *= x*10;”

Table 1 shows values for a and b for various dynamic ranges (i.e. the difference
between the maximum loudness and background noise level), giving the ‘ideal’
response curve for a volume control whose position is described by a number in
the interval [0,1]. If you can afford implementing the exponential function in your
software/hardware, by all means use this formula. If you do not know for sure
what the actual maximum loudness is that the consumer's hardware can produce
with the volume control at position 1, try to make an educated guess. 90 dB(A)
with a background noise level of 30 dB(A) hence a useful dynamic range of

60 dB, is probably a good guess. It will never be exact anyway because the dB(A)
value also depends on the kind of sound being played. Yet, even a curve with
parameters for a max dB(A) that is off by quite a bit, will still be much better than
a silly linear curve especially when using the smooth roll-off to zero as described

above.

Table 1: Values for a and b in the equation

a-exp(b-x)
Dynamic range a b Approximation
50 dB 3.1623e-3 5.757 ,3
60 dB le-3 6.908 4
70 dB 3.1623e-4 8.059 ,5
80 dB le-4 9.210,6
90 dB 3.1623¢-5 10.36 ,6
100 dB le-5 11.51 7

Finding the not-so-1deal-but-still-quite-good

curve



exp(6.908 X} 1000

o 10X

Some programmers may not like including an entire math library just to make a
good volume slider with an exponential function. Luckily, there is an alternative
which sufficiently approximates an exponential curve, is much cheaper and
reaches zero at zero automatically. The graph at the right shows three curves: the

linear curve (yuck), the 60 dB exponential curve (red), and the curve of the

function x* (blue). As you can see, the blue curve lies pretty close to the red
curve, and you can also see how monstrously the linear curve deviates. The fourth
power-function demands only three multiplications (or two at the cost of an extra

line of code), and it starts from zero, what more could one want?

I tried the x* curve in some experiments and for most volume settings it has a very

natural ‘feel’, so I can highly recommend it. Depending on your personal taste

you may find x> an even better approximation. Keep in mind that in situations

where the maximum volume is rather quiet you may need a less ‘strong’ curve
like x3, and a ‘stronger’ curve if the maximum volume is really loud. For a

dynamic range of 90 dB, xCisa good approximation but keep in mind that only

few systems will need that kind of range.

The last column of Table 1 shows reasonable approximations of the form x” for
each dynamic range value. You can see in the series of graphs below how well
those approximations correspond to the ideal curves when plotted in a dB
(logarithmic) scale. Hover over or touch the numbers to change the graph. You
will see that the approximation is worst at the lowest slider settings: because the
volume quickly drops to zero (= minus infinity on the dB scale), the actual usable
range of the volume slider is slightly reduced. That is a small price to pay for an

otherwise much more balanced response, especially if you see how awfully the

simple linear curve (x) deviates. The formula x’ remains a good approximation up

to a dynamic range of 120 dB, but you should not be making equipment that



exposes the user to an average above 100 dB(A) anyway, lest you want to attract

lawsuits for damaged hearing.

A X

Notes

If you are going to use a discrete volume control instead of a slider, that is
increased or decreased in steps by pressing an ‘up’ and ‘down’ button, be aware
that the smallest difference in volume that humans can perceive is about / dB, or
10%. Actually this also counts for many other perceptions like the size of an
object or speed. Hence it is useless to make your increments smaller than 10%,
but don't make them too large either or your volume control will be too coarse. A
good step size is 2 dB, you should not exceed 3 dB. One version of the Gnome
volume control widget had 5 dB steps when using the scroll wheel or volume
keys. This is too large, and the web is full of complaints about it, but at the time
of this writing it has not been fixed—only made worse by replacing the fixed step

size with a quadratic function.

I sometimes get mails from people who want to know how they should configure
a hardware or software volume control that already uses dB values by design.
Some seem to believe they still need to apply a non-linear transformation to the
dB values. No! The only things you need to determine there, are the range you
want to use and the step size if applicable. For instance if the volume control
offers a range of 120 dB, most likely you will want to limit it to the upper 60 dB
range. Some controls offer attenuation (negative dB values) as well as
amplification (positive dB values), you need to determine if your application

needs either or both.

Some people have half-baked knowledge about sound perception being
logarithmic, which causes them to make shoddy reasonings like the following. "A
sound of 98 dB(A) is annoyingly loud, but if we can reduce it to 95 dB(A), it is
only half the power, therefore only half as annoying!" Right and wrong. The



power is indeed halved (and the amplitude reduced to a fraction 0.71), but the
perceived loudness is only 3 dB lower. Since a 1 dB difference is at the limit of
being unnoticeable, 3 dB is only a tad above barely noticeable. 95 dB(A) is still
mighty loud and unless other characteristics of the sound have changed, it will be
only slightly less annoying than at 98 dB(A). The same reasoning is often applied
to hearing damage, which is equally wrong because the relation between loudness

and hearing damage is not linear as well.

Remember that all this does not only apply to sliders. It also applies to menus
with volume presets and rotating knobs (although these are quite rare in software,
but all potentiometers of decent audio equipment approximate an exponential
characteristic). It also counts for equalisers, because these are volume controls in
their own right, even if they only control a part of the frequency spectrum. After
reading this text it should be clear that implementing volume controls is not exact
science except in well-controlled situations. However, the core message you

should take home is: volume must be exponential, or at least look like it!

Example Files

Don't take my word for it, hear the difference for yourself in a few MP3 files that

start and end at the same amplitudes but use the different methods in between.

About Frequency Controls and Analysis

This is somewhat less of an issue, because few applications have to deal with
frequencies at the user end. However, a similar story holds for those that do, but
with a slight difference. The human sensation of ‘tone’ is also far from linear but
it is not exactly exponential either. At the lowest frequencies it is more linear,
while at the high frequency side it is exponential. As overall approximation
however, an exponential curve is much better than a linear curve. So please, no
linear frequency controls either! You would not want to listen to a piano tuned to

a linear scale.

This does not only apply to sound generation but also sound analysis. If you want
to create a spectral analysis, the graph should have a logarithmic scale (on both
axes, frequency and amplitude) unless there are specific reasons to use a linear
scale. With a linear frequency scale all low frequencies will be squeezed into a
few lines while the high frequencies will be smeared over a wide area. Mind that
even though the audible sound range reaches until 20kHz, “high frequencies”
already start at £2kHz! The most interesting stuff in music happens below 2 kHz.
For speech, you can't do much with frequencies above 4kHz (that's why

telephones filter these out). Yet these would occupy 80% of a linear spectrogram!



Unfortunately it is not easy to generate a spectrum with a logarithmic frequency
axis. FFTs are linear and the only way of getting a log scale from an FFT is to
warp the output, resulting in poor resolution at the low frequencies and
exaggerated resolution at the high frequencies. To counter this, one could take a
resolution so high that it is accurate enough even at the lowest frequencies. That
will however result in poor temporal resolution at high frequencies. There is no
such thing as a variation on the FFT which produces a log scale right away, but
other approaches can be used, for instance a filter bank with filters whose
bandwidth increases with frequency. The only problem with that approach is that
the time interval of the lower frequency filters needs to be longer than the higher
frequencies, which makes it difficult to provide a unified frequency response at

any given time.

©2002-2020 Alexander Thomas [contact]

(1): A funny example of this is the BBC video player that was embedded in news
article pages around the year 2012. It had a Spinal Tap-inspired volume slider that
goes "all the way up to eleven" but because it is linear, the difference between 10
and 11 is completely unnoticeable. There is hardly even any perceivable increase

in volume between 8 and 11.

(2): This equation may not be strictly mathematically correct, but it is sufficiently

valid for all intents and purposes in this text.

(3): Of course no attribution is needed when implementing a volume control

according to this article. The license only applies to the text itself.



